Reducing Uncertainty in Reasonable Assurance Analysis (RAA) through an Enhanced BMP Effectiveness Dataset

Background

- In 2017-18, STORMS held two workshops to develop guidance for Alternative Compliance
- A major outcome was how to address uncertainty within Reasonable Assurance Analysis (RAA)
- STORMS selected a follow-up project to address RAA uncertainty: BMP performance

Project Goals

- Largest resource for BMP performance data is currently the International BMP Database
- Uncertainty arises because most of the IBMPDB is not from California
 - Nearly all of the California data is >10 years old
- Goal of this project is to compile updated performance data specifically for California

Approach

- Select the BMPs and pollutants we want
- Outreach to data generators
 - Compile as much data as possible
- How well does each BMP perform by pollutant?
 - How do we measure performance?
 - Can we figure out why some perform better than others?

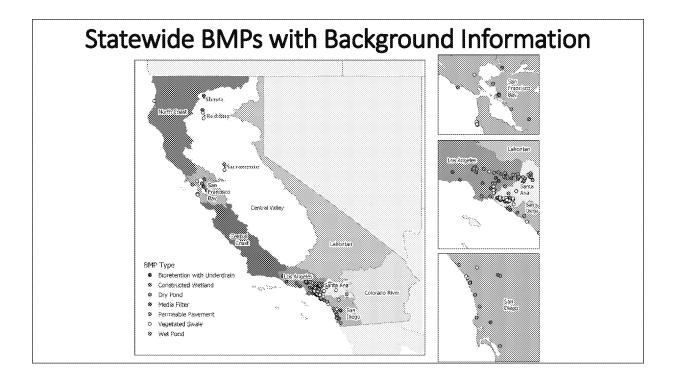
Focus on Flow-Thru BMPs

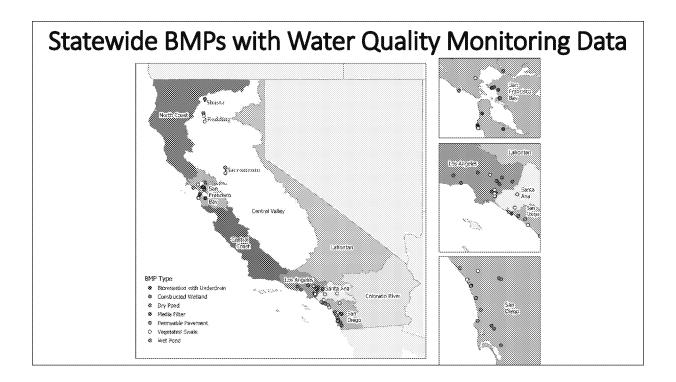
- Media filters
- Dry pond
- Wet pond
- Constructed wetland
- Vegetated swale
- Bioretention with underdrain
- Permeable pavement

Focus on Representative Pollutants

- Flow
- Bacteria
 - E.coli
 - Enterococcus
- Trace metals
 - Copper (total and dissolved)
 - Lead (total and dissolved)
 - Zinc (total and dissolved)
 - Mercury (total)
- Nutrients
 - Nitrate
 - Phosphorus
- PCBs

Queried 45 Different Data Generators


- Municipalities
- Consultants
- Non-profits
- Caltrans
- Stormwater Associations
- Sewer Districts
- Water Agencies


Road Map to Results

- Inventory of compiled data
- Evaluating how best to assess performance
- Performance comparison among BMPs
- Changes in performance with climate or geography

Inventory of Compiled BMP Data

BIVIP Category	Ner	Number of			
	Background Info	Design Specs	Flow Data	Water Quality Data	SteeStern Syents
Vegetated Swale	45	22	24	27	380
Media Filter	65	19	16	28	366
Dry Pond	7	6	8	6	99
Wet Pond	48	3	5	5	125
Constructed Wetland	5	1	1	2	657
Permeable Pavement	22	6	0	2	2
Bioretention System with Underdrain	23	12	3	13	71
Total	214	69	57	81	1700

Regional Distribution of BMPs with Monitoring Data

ВМР Туре	San Francisco Bay R2	Los Angeles R4	Sente Ana RE	Sen Biogo Re	Contral Valley RS
Bioretention with Underdrain	10			3	
Constructed Westama				1	
Dry Pond		2		4	
Media Filter	11	10		5	2
Permeable Pavement	1			1	
Vegetated Swale	8	6	5	5	3
Wet Pond	2	1			1
TOTAL	32	19	5	19	6

Sample Size for BMP-Pollutant Pairs

ВМР Түре	Dry Pond	Media Filter	Vegetates Swale	Wet Pond
Flow	91	166	283	32
Cu	68	192	277	60
26	69	199	277	59
7.00	68	197	276	60
He	0	3	5	12
Nitrate	68	186	262	45
TKN	68	159	258	58
Total Phosphorus	67	183	257	58
PGB	0	3	0	0

Temporal Distribution of WQ Monitoring Data

BIMP Type	Pre-2000	2006-05	2006-10	2011-15	201.6-20	Total Da
Bioretention with Underdrain	0	0	0	0	51	51
ionstruorea Wetterra	289	889	874	685	0	2737
Dry Pond	100	644	0	0	0	744
Media Filter	111	1312	234	267	43	1967
Zarmeable Pavament	0	0	0	1	0	1
Vegented Syala	0	1826	787	65	35	2713
WebPond	193	136	117	6	40	492
TOTAL	693	4807	2012	1024	169	8705

Summary of Inventory

- Double the number of BMPs and storm events in the IBMPDB
- 4 out of 7 BMPs with sufficient data
- 8 out of 14 pollutants with sufficient data
- Half the data is now < 10 years old
- About evenly split between Bay area and So Cal

Road Map to Results

- Inventory of compiled data
- Evaluating how best to assess performance
- Performance comparison among BMPs
- Changes in performance with climate or geography

Four Methods To Estimate "Performance"

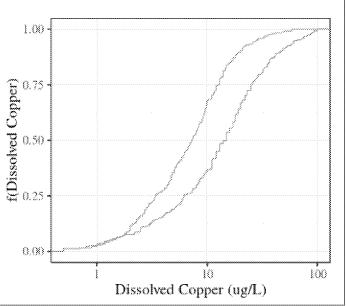
- Percent reduction
 - Influent concentration Effluent concentration
- Effluent probability
 - Probability distribution
- General linear regression
 - Relationship between influent and effluent
- Quantile regression
 - Relationship between influent and effluent

As an example:

Dissolved Cu removal in Vegetated Swale

- √ 8 Years of data
- ✓ 23 BMPs
- ✓ 258 storm events

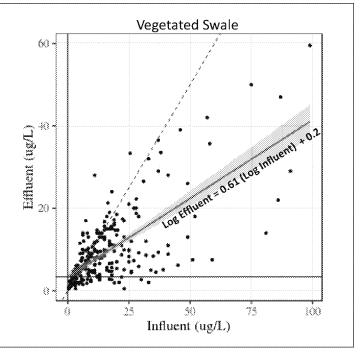
Percent Reduction


BMP Efficiency (%) =
$$\frac{c_{in} - c_{eff}}{c_{in}}$$
x100

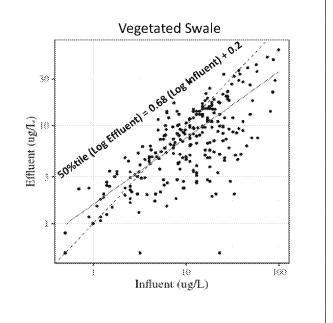
Vegetated Swale: **17 ± 52** % removal of Dissolved Copper Concentration

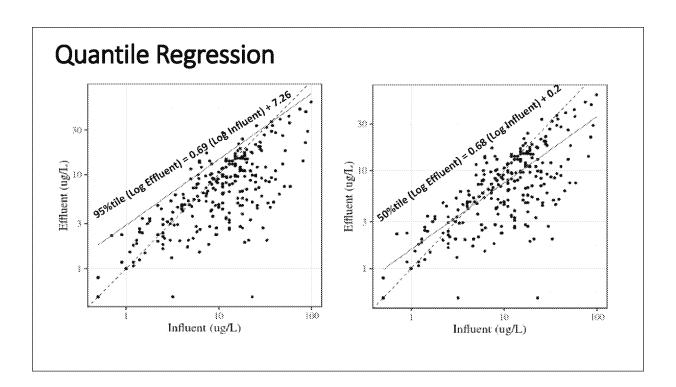
- The most common approach
- Requires paired influent and effluent data
- Performance typically calculated as the average
- Can become biased when concentrations get very low

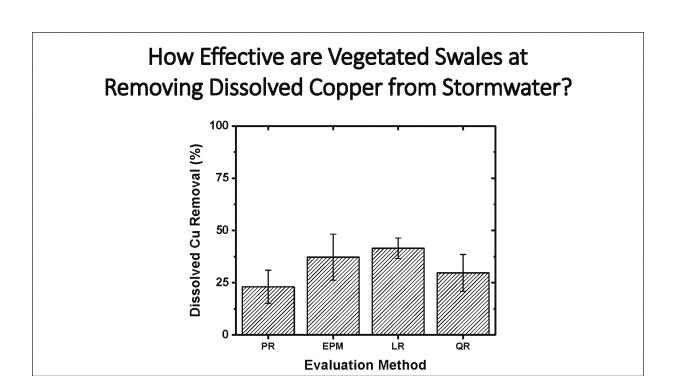
Effluent Probability Method

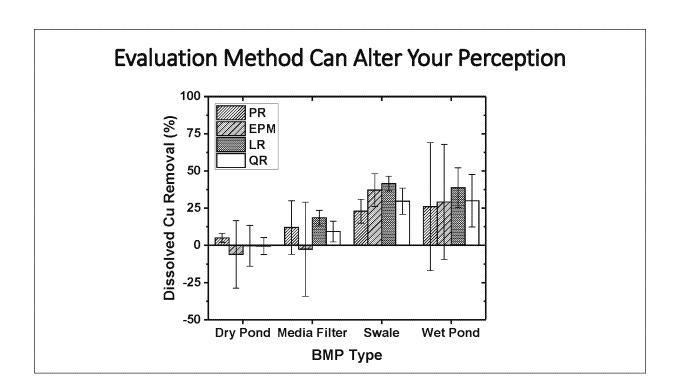

- Good for assessing distribution of expected effluent concentrations
- Does not require paired Influent-Effluent data
- We calculated removal by picking the 50% influent concentration and subtracting the effluent concentration

-Inflow - Outflow

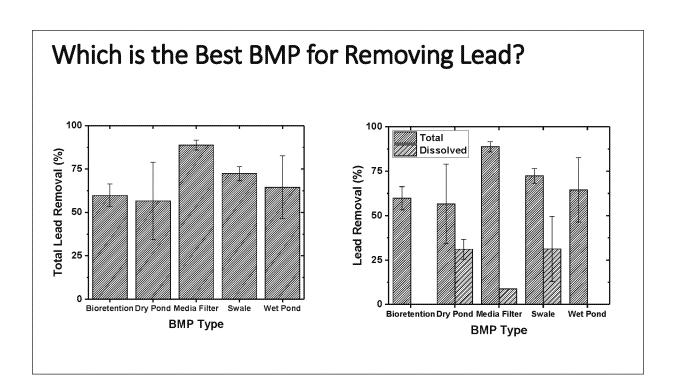

Linear Regression

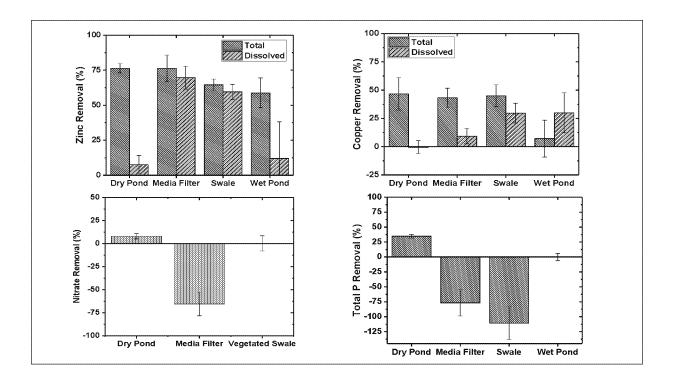

- Focuses on the influent-effluent relationship
- Uses typical regression statistics
 Assumptions about normality
- Provides an estimate of the average
- We estimated removal by applying the median influent concentration




Quantile Regression

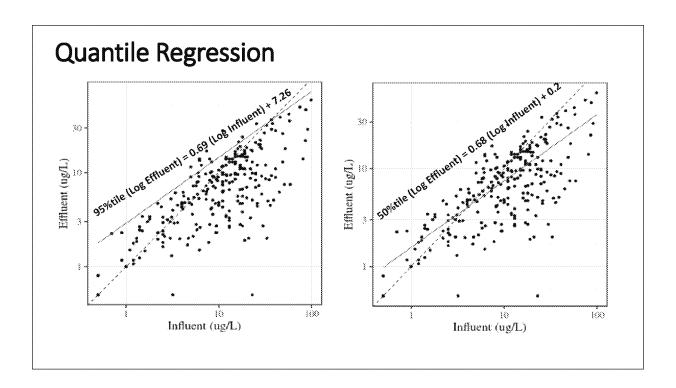
- Focuses on the influent-effluent relationship
- Uses "novel" regression statistics
 - No assumptions about normality
- Provides an estimate of any portion of the distribution
- We estimated removal by applying the median influent concentration

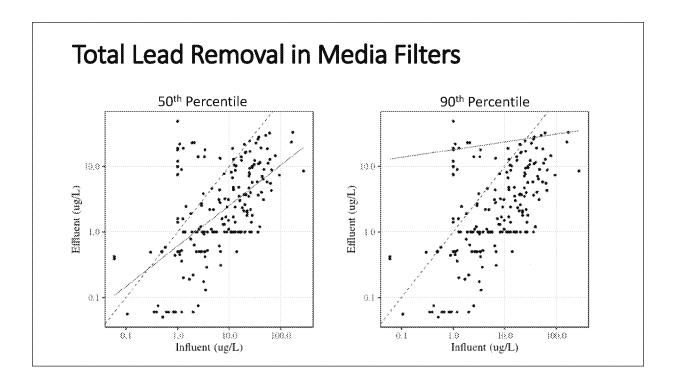

Pros and Cons for Evaluation Method

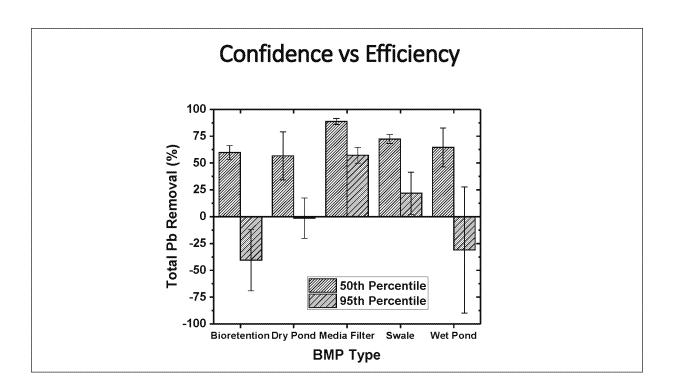

	Reduction		Eliteration Regression	
Provides an estimate of the average	Х	Х	Х	Х
Provides relationship between influent and effluent			Χ	Х
Unbiased with outliers or non-normal data		X		Χ
Provides estimate of the distribution (uncertainty)		X		Х

^{*} Remainder of presentation will focus on Quantile Regression

Road Map to Results

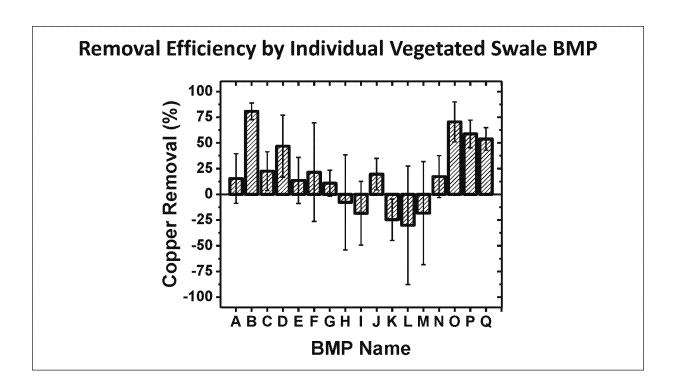

- Inventory of compiled data
- Evaluating how best to assess performance
- Performance comparison among BMPs
- Changes in performance with climate or geography

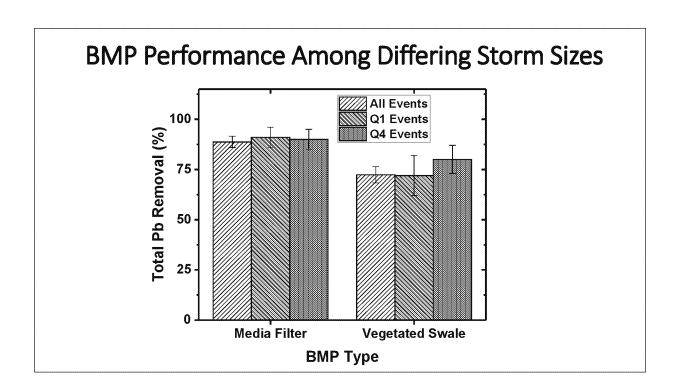


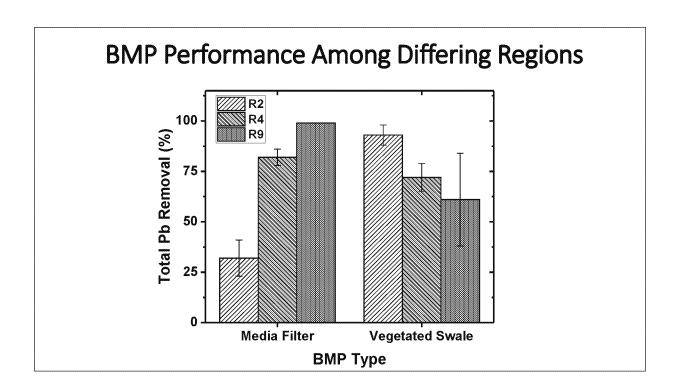


What About Uncertainty?

- So far, I've been showing you standard deviation about the mean/median
- That may not be the best choice if you want to capture the range of uncertainty
 - Improve your probability of reaching treatment goals
- Quantile regression allows you to estimate different probabilities of success

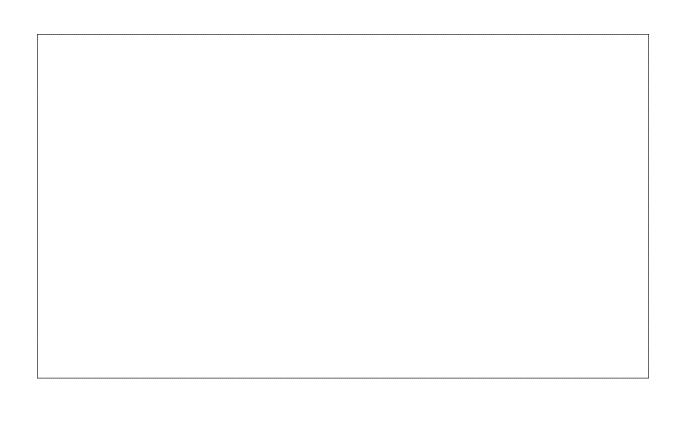






Road Map to Results

- Inventory of compiled data
- Evaluating how best to assess performance
- Performance comparison among BMPs
- Changes in performance with climate or geography

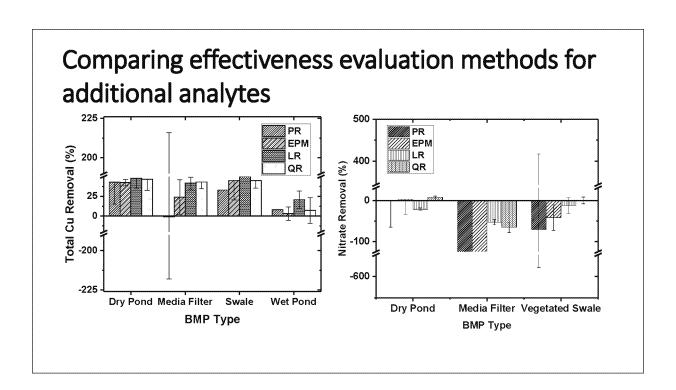


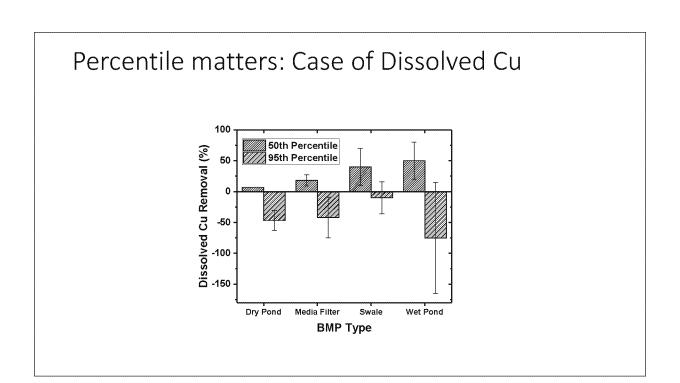
Our Next Steps

- Finish summarizing performance for all BMP-Pollutant pairs
- Complete our assessment of what could be causing the variability
- Final Technical Report by March 31
 - Journal article
- Decide where the data should "live"

Options for Public Facing Data Set

- SWRCB (i.e., OIMA)
- Individual RWQCBs
- International BMP database
- CASQA or SMC
- University
- SCCWRP or SFEI


Dominant land use for BMP locations with monitoring data


BMP Type 13	esidential	Industrial	Commercial (Other Urban or	Rangeland Pasture	Transportation
						CONTROL CARRO
	_	_	Service			2110 22111
a to rata	5	5	3	X	X	X
Underdrain						
Constituent	Х	x	1	Х	X	X
Well-sta						
	2	×	2	1	1	X
Media Filia	12	x	9	2	4	1
Permeable	1	x	X	1	x	X
Pavement						
Vesterated Sivale	8	Х	4	1	8	7
Wei Pond	х	×	x	×	3	x
Total	28	5	19	5	16	8


Not every BMP-Pollutant pair has same data coverage

☐ Analytes are only selected if 20+ data pairs from 5+ BMPs are available

BMP Type	Analytes
Bioretention	Total Pb, Total Hg, Total PCB
Dry Pond	Pb, Cu, Zn, TKN, Nitrate, TP, Flow
Media Filter	Pb, Cu, Zn, TKN, Nitrate, TP, Flow
Vegetated Swale	Pb, Cu, Zn, TKN, Nitrate, TP, Flow
Wet Pond	Total Pb, Cu, Zn, TKN, Nitrate, TP, Flow

